京翰教育认为数学分析是数学系重要的课程。许多后续课程都以它为基础,例如常微分方程、偏微分方程、复变函数、实变函数,以及泛函分析。这些都属于分析数学的范畴。此外,作为几何学一分支的拓扑学,主要研究拓扑空间在连续映射下不变的性质,而连续映射是数学分析中研究的连续函数的推广。
温馨提示:家长您好!如需咨询中小学一对一辅导课程,请直拨400全国免费电话,听到语音提示后请直拨4位数分机号,与咨询老师直接通话。感谢您的来电,祝孩子学习进步!
杭州京翰教育一对一免费咨询电话
庆春校区—————400 8108 720转1486
文晖校区—————400 8108 720转1487
文二校区—————400 8108 720转1488
萧山校区—————400 8108 720转1489
杭州京翰名师数学一对一/杭州京翰教育新初三暑期班
下面我想就数学分析的学习,谈谈我的看法。一谈到数学的学习,很多人想到的就是要多做习题。但是,我认为重要的还是要先仔细研读教科书,搞清楚每个定义和定理。在这个基础上适当做些习题才会事半功倍。没有弄清基本的概念,对学过的定理也没有吃透,就急急忙忙去做习题,必然会碰到很多困难,甚至会丧失自信心。这是一种不可取的学习方法。
首先,要彻底弄清楚接触到的每个定义。数学上的定义,都是从许多具体的事例中抽象出来的。这些定义虽然是具体事例的抽象,但却又是很自然的。我们在学习中要多思考,并且通过具体的例子来掌握各个定义的内涵。数学的定义中往往有各种各样的条件。对这些条件要仔细揣摩,体会它们的作用。有时还需要通过正反两方面的例子来辨析不同的概念。只有这样才能真正掌握,并能在推理中做到灵活运用。
其次,每学习一个定理时,就要从内涵上弄清这个定理的含义,即它到底说了什么事情。这往往可以结合几何直观来把握。然后就是研究定理中要求的条件。这可以通过研究定理的证明了解这些条件的作用,还可以通过反例来弄清当某个条件不成立时,结论为何不对。通过这样正反面的思考,就会对这个定理有比较好的理解。我见到很多数学系的学生,在解题时说“因为f是闭集F上的连续函数,所以f有界”。之所以犯这样的错误,就是因为没有很好地掌握“有界闭集上的连续函数必有界”这个定理。
再者,定理的证明也值得我们好好研究。通过研读定理的证明,可以加深我们对这个定理的理解。而且,在定理的证明过程中我们还可以学习到本学科的各种基本的论证方法。熟悉这些方法之后,我们就自然能够把它们应用到我们面临的问题中去。有些定理的证明是很漂亮的,充分展现了数学的美。我们在学习过程中还要好好体会这种美,这对提高我们的数学素养不无益处。当然,有些定理的证明比较繁难,为了不打击自信心,我们可以先跳过它,等过后有机会再回来研究它。
杭州京翰名师数学一对一/杭州京翰教育新初三暑期班